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Abstract

Describing transient heat transfer in heterogeneous media is still a problem. This study was conducted to investigate if the consider-
ation of the history term is a way to improve the description of this phenomenon. To that end the history term is analytically derived for
a particle in a packed bed with stagnant fluid and its order of magnitude is estimated. The history term is significant in liquid–solid
packed beds, whereas in the case of gas–solid packed beds the history term can usually be neglected except for very large heat fluxes
as for instance in laser-pulse heating.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In several previous studies the transient heat transfer
from (or to) a rigid sphere situated in a fluid of infinite
extension has been examined [1–5]. It was shown by differ-
ent derivations [2,4,5] that a history term has to be consid-
ered in the transient energy balance of the particle. The
cases in which the history term may be of significance are
somewhat controversial: While in [3] and [5] it was con-
cluded that for b � ð~cp;f=~cp;sÞ ! 0 – as for instance in
gas–solid flows – the history term is negligible, it has been
shown recently in a numerical study [1], that the history
term is also significant for b > 0:01. All abovementioned
studies dealing with the history term in the energy balance
of a particle have in common that the findings therein can
only be attributed to dilute suspensions of particles in a
stagnant fluid. So far no study has been conducted examin-
ing the significance of the history term in case of transient
heat transfer in packed beds with stagnant flow.

The latter phenomenon is of special interest because it
was observed in various experiments [6–10] that it can
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2007.10.040

* Corresponding author. Tel.: +49 30 314 24381; fax: +49 30 314 22157.
E-mail address: nico.zobel@tu-berlin.de (N. Zobel).
sometimes not be described by parabolic heat conduction
(Eq. (1))

~_qð~r; tÞ ¼ �keffrT ð~r; tÞ: ð1Þ
A prerequisite for the validity of the parabolic equation is
local thermal equilibrium, i.e. the temperatures of the fluid
and solid phase are equal in every differential volume ele-
ment. To account for local thermal non-equilibrium in
transient heat transfer, the dual phase lag (DPL) model
was proposed [11]. It was suggested that Eq. (1) needs to
be modified as follows:

~_qð~r; t þ sqÞ ¼ �keffrT ð~r; t þ sTÞ: ð2Þ

sq and sT are referred to as lag times for heat flux and tem-
perature gradient, respectively. Expanding ~_q and rT in
Taylor series, where the terms of higher than first order
are neglected, yields:

~_qð~r; tÞ þ sq
o~_qð~r; tÞ

ot
¼ �keff rT ð~r; tÞ þ sT

orT ð~r; tÞ
ot

� �
: ð3Þ

Experimental studies [6,8] demonstrated that the heat
transfer equation according to the DPL model (Eq. (3))
is better suited for transient heat transfer in heteroge-
neous media than Fourier’s law (Eq. (1)). But the evalua-
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Nomenclature

Latin symbols

a thermal diffusivity
A area
cp mass specific heat capacity at constant pressure
~cp volume specific heat capacity at constant pres-

sure
d diameter
h roughness
L distance between two parallel planes
N number of particle layers
~_q heat flux vector
r radial coordinate, radius
~r position vector
t time
T temperature
u generic quantity
V volume
y generic quantity

Greek symbols

b ratio of volumetric heat capacities (fluid/solid)
c geometric parameter, ratio L=ds

k thermal conductivity
K mean free path
s (lag) time
h angle
. density

Subscripts

0 initial value
eff effective value
c pertains to inter-particle heat transfer by contact

conduction
f pertains to fluid
i pertains to the inner zone of inter-particle heat

transfer
j pertains to the jth neighbour particle
max maximum value
o pertains to the outer zone
q pertains to heat flux
r pertains to radiation
s pertains to particle/solid phase
T pertains to temperature gradient
Ds pertains to temperature step change at the parti-

cle’s surface
Dj pertains to temperature step change at the sur-

face of the jth neighbour particle
1 at large distance from particle

Superscript
* dimensionless quantity
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tion of the lag times is still a matter of discussion. In a
very recent study [12] it was theoretically predicted that
sT > sq. According to Eq. (2) this means that the heat flux
depends on a temperature gradient of the future. This
raises the question if the principle of causality is violated
if sT > sq holds. Fitting of experimental data resulted in
the opposite conclusion [8,13]. Furthermore it has been
found by fitting of experimental data [6] and by theory
[12] that the lag times can be of the order of several
100 s. These large values indicate that the neglection of
the higher order terms of the Taylor series expansion that
was used in the derivation of Eq. (3) is not justified,
meaning that the DPL model is not adequate. Hence, it
is to be expected that at large values of the lag times sq

or sT Eq. (3) does not hold.
In many studies sT ¼ 0 is adopted, resulting in the

hyperbolic heat transfer equation:

~_qð~r; tÞ þ sq

o~_qð~r; tÞ
ot

¼ �keffrT ð~r; tÞ: ð4Þ

Eq. (4) is often referred to as Cattaneo–Vernotte [14,15]
equation. It has also been successfully applied to various
transient heat transfer processes in heterogeneous media
[7,9,10]. But the experimental data to which the Catta-
neo–Vernotte equation were applied, have been questioned
seriously [16,17]. The order of magnitude of the lag time sq

(also often referred to as relaxation time) is also a matter of
controversy, as has been pointed out by Roetzel et al. [7].

In light of these considerations it can be concluded that
the parabolic equation (Eq. (1)) can not be applied univer-
sally for transient heat transfer in heterogeneous media, but
the establishment of a model that reliably predicts transient
heat transfer remains a task for the scientific community.

One major shortcoming of the parabolic heat transfer
equation (Eq. (1)) is that the effective thermal conductivity
keff only applies to steady-state heat transfer in heteroge-
neous media [18]. It will be shown in this study that the his-
tory term is a means to correct this error. The main
objective of this study is, therefore, to investigate if the his-
tory term has a significant impact. If that is the case, then
the fact that the parabolic equation (Eq. (1)) fails to
describe transient heat transfer in heterogeneous media
may be due to the neglection of the history term.

The paper is organized as follows: In Section 2 the his-
tory term for a rigid particle in a packed bed of spheres will
be derived. A physical interpretation of the history term
will be given. In Section 3 it will be estimated if the history
term has a significant impact on transient heat transfer in
heterogeneous media. After a discussion of the results (Sec-
tion 4) a conclusion will be presented (Section 5).



Fig. 1. Model for the zone between two contacting spheres.
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2. Derivation of the history term for a particle in a packed

bed

So far the history term was only derived for a dilute
suspension of particles [2,4,5]. In a monodisperse packed
bed, however, a spherical particle is in contact with an
average of six neighbour particles [19]. The fluid in the
interstitial region is assumed to be stagnant. It is further-
more assumed that the temperature in the solid particles
is homogeneous (but not constant in time). This assump-
tion is justified by the fact that the heat conductivities of
solids are several orders of magnitude larger than those of
gases. For metals this assumption also holds in combina-
tion with liquids.

There are in principle three different ways of heat trans-
fer between the surfaces of two contacting particles in a
stagnant fluid: radiation ( _qr), conduction through the fluid,
and conduction through the contact area ( _qc). Slavin et al.
[20] pointed out that the conduction through the fluid can
be further categorized: In a region where the gap between
the two spheres is less than two third of the molecular mean
free path (K) it is more likely for a molecule to collide with
the surface than with another molecule. The heat transfer
within this inner region is referred to as _qi. In an outer
region, where the gap is >(2/3)K, heat transfer occurs by
‘‘usual” conduction ( _qo).

Thus, the energy balance of a particle with homoge-
neous temperature in a packed bed without heat source
or sink reads:

.scp;sV s
dT s

dt
¼ �

X6

j¼1

Z
Ac;j

~_qc;j d~Aþ
Z

Ai;j

~_qi;j d~A

 

þ
Z

Ao;j

~_qo;j d~Aþ
Z

Ar;j

~_qr;j d~A

!
: ð5Þ

Here j is the index for one of the six neighbour particles.
Ac;j, Ai;j, Ao;j, and Ar;j are the areas of the particle surface
through which _qc;j, _qi;j, _qo;j, and _qr;j are transferred, respec-
tively. The boundary of the inner contact region Ai;j is given
by the angle hi. According to Slavin et al. [20]:

hi ¼ ð2=3ÞK�2h
r2

s
if 2

3
K > 2h;

hi ¼ 0 if 2
3
K 6 2h:

ð6Þ

Here, h is the roughness of the particle surface. Angle ho,
the outer boundary for Ao;j, can only be roughly estimated
to be 60�.

In a first study Slavin et al. [21] concluded that the con-
ductance across the particle–particle contact was negligible
except under conditions of low gas pressures. In a second
study [20] they also showed that at gas pressures above
0.048 bar and at temperatures between 300 and 900 K the
heat conduction in the outer fluid region _qo dominates all
other modes of heat transfer between contacting spheres.
Thus, if no heat sink or source is present, then the energy
balance of the particle reduces to:
.scp;sV s
dT s

dt
¼ �

X6

j¼1

Z
Ao;j

~_qo;j d~A

¼
X6

j¼1

Z
Ao;j

ðkf ;jrT f ;jÞdA: ð7Þ

That is: the energy of the particle is altered only by heat
conduction through the fluid (under the conditions stated
above). In general _qo;j is not distributed homogeneously
over Ao;j. Therefore the integrals in Eq. (7) cannot be deter-
mined analytically. The latter can be made possible if the
geometry of the contact region is modeled as shown in
Fig. 1. According to this model the heat transfer between
two contacting spheres is represented by one-dimensional
heat conduction between two parallel planes. Under the
assumption that the fluid temperature between these two
parallel planes is only dependent on time and coordinate
x (see Fig. 2) the energy balance of the particle can be sim-
plified to:

.scp;sV s
dT s

dt
¼
X6

j¼1

kf ;j
oT f ;jð0; tÞ

ox

� �
Ao;j: ð8Þ

The gradient (oT f ;j=ox) can now be determined analytically
which will be outlined in the following.

If the dimensionless responses y�kðtÞ of an output vari-
able yðtÞ to step changes of various input variables ukðtÞ
are known, then Duhamel’s theorem reads [22]:

yðtÞ ¼
Xn

k¼1

ukðt ¼ 0Þy�kðtÞ þ
Z t

0

y�kðt � sÞ dukðsÞ
ds

ds

� �
: ð9Þ

This superposition of several input variables ukðtÞ is only
possible if the dimensionless responses y�kðtÞ do not depend
on the values of ul 6¼kðtÞ. It will be demonstrated in the
course of this study, that this condition is valid in our case.



Fig. 2. Setup of the thought experiment.
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In our case it is advantageous to choose T f ;jðx; tÞ � T 0 as
the output quantity yðtÞ. T f ;jðx; tÞ is the fluid temperature
between particle s and particle j, while T 0 is the homoge-
neous initial temperature of the whole packed bed. The
input quantities can be identified with the temperatures
of the two parallel planes, i.e. the temperatures of two
neighbour particles, T sðtÞ and T jðtÞ, respectively. It is,
again, useful to relate these temperatures to the initial tem-
perature T 0. Thus, Duhamel’s theorem applied to our
problem reads:

T f ;jðx; tÞ � T 0 ¼
Z t

0

T �Dsðx; t � sÞ dT sðsÞ
ds

ds

þ
Z t

0

T �Djðx; t � sÞ dT jðsÞ
ds

ds: ð10Þ

T �Ds and T �Dj are the dimensionless transient responses of the
fluid temperature field to step changes of the temperatures
T s and T j, respectively. These responses will be analytically
derived in the next paragraphs. Eq. (10) can be further sim-
plified by taking the derivative with respect to x, since we
are actually interested in the gradient at the surface of
the particle (i.e. at x ¼ 0):
oT f ;jð0; tÞ
ox

¼
Z t

0

oT �Dsð0; t � sÞ
ox

� �
dT sðsÞ

ds

�

þ
oT �Djð0; t � sÞ

ox

� �
dT jðsÞ

ds

�
ds: ð11Þ

Eq. (11) shows that we have to determine the time-depen-
dent gradients of the dimensionless fluid temperature at
x ¼ 0 for step changes of T s and T j, respectively. This will
be done in the following.

The analytical solution for the one-dimensional tran-
sient temperature field T f ;jðx; tÞ in a stagnant fluid bounded
by two parallel planes is given in [23]. If the temperatures at
the two boundaries are kept fixed at T f ;jð0; t > 0Þ ¼ T s and
T f ;jðL; t > 0Þ ¼ T j, respectively, then:

T f ;jðx; tÞ ¼ T s þ ðT j � T sÞ
x
L
þ � � �

þ 2

p

X1
n¼1

ð�1ÞnT j � T s

n
sin

npx
L

exp � af ;jn2p2t

L2

� �

þ 2

L

X1
n¼1

sin
npx
L

exp � af ;jn2p2t

L2

� �

�
Z L

0

T ðx0; 0Þ sin
npx0

L
dx0: ð12Þ

For a homogeneous initial temperature field, i.e.,
T f ;jðx; 0Þ ¼ T 0, the integral on the right-hand side can be
evaluated as follows:Z L

0

T 0 sin
npx0

L
dx0 ¼ � LT 0

np
cos

npx
L

h iL

0

¼ � LT 0

np
½ð�1Þn � 1�: ð13Þ

Hence, the transient temperature field can be rewritten as

T f ;jðx; tÞ ¼ T s þ ðT j � T sÞ
x
L
þ . . .

þ 2

p

X1
n¼1

ð�1ÞnðT j � T 0Þ � ðT s � T 0Þ
n

sin
npx
L

� exp � af ;jn2p2t

L2

� �
: ð14Þ

A temperature step change at x ¼ L is equivalent to setting
T sðt > 0Þ ¼ T 0. The influence of a change of T s on the fluid
temperature gradient at x ¼ 0 will be evaluated seperately
(see Eq. (18)). The resulting transient temperature field is
therefore:

T Djðx; tÞ ¼ T 0 þ ðT j � T 0Þ
x
L
þ 2

p

X1
n¼1

ð�1Þn

n
sin

npx
L

 

� exp � af ;jn2p2t

L2

� �!
: ð15Þ

The derivative with respect to x is

oT Djðx; tÞ
ox

¼ T j�T 0

L
1þ2

X1
n¼1

ð�1Þn cos
npx
L

exp �af ;jn2p2t

L2

� � !
:

ð16Þ
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For the gradient of the dimensionless temperature at x ¼ 0
we get:

oT �Djð0; tÞ
ox

¼ 1

T j � T 0

oT Djð0; tÞ
ox

¼ 1

L
1þ 2

X1
n¼1

ð�1Þn exp � af ;jn2p2t

L2

� � !
: ð17Þ

Hence, the second gradient in the integral of Eq. (11) is
known. The first gradient in that equation can be deter-
mined analogously, yielding:

oT �Dsð0; tÞ
ox

¼ 1

T s � T 0

oT Dsð0; tÞ
ox

¼ � 1

L
1þ 2

X1
n¼1

exp � af ;jn2p2t

L2

� � !
: ð18Þ

The analytical solutions for the two gradients (Eqs. (17)
and (18)) show that these responses do not depend on
either one of the two input parameters T j and T s. Therefore
Duhamel’s theorem – as written in Eqs. (10) and (11) – can
be applied in our case. Substituting the gradients in the
integral of Eq. (11) with Eqs. (17) and (18) yields:

oT f ;jð0; tÞ
ox

¼�1

L

Z t

0

1þ2
X1
n¼1

exp �af ;jn2p2ðt� sÞ
L2

� � !
dT s

ds
ds

þ 1

L

Z t

0

1þ2
X1
n¼1

ð�1Þn exp �af ;jn2p2ðt� sÞ
L2

� � !

�dT j

ds
ds

) oT f ;jð0; tÞ
ox

¼ T j�T s

L
þ�� �

þ 2

L

Z t

0

X1
n¼1

exp �af ;jn2p2ðt� sÞ
L2

� �

� ð�1Þn dT j

ds
�dT s

ds

� �
ds: ð19Þ

This result can now be applied to the energy balance of the
particle, Eq. (8), resulting in

.scp;sV s
dT s

dt
¼
X6

j¼1

Ao;jkf ;j
T j � T s

L
þ . . .

þ
X6

j¼1

Ao;j
2kf ;j

L

Z t

0

X1
n¼1

exp � af ;jn2p2ðt � sÞ
L2

� �

� ð�1Þn dT j

ds
� dT s

ds

� �
ds: ð20Þ

For the sake of brevity the second term on the right-hand
side of Eq. (20) will be referred to as fHT in the following.

For a physical interpretation of the history term let us at
first focus on the first term on the right-hand side of Eq.
(20). This term describes the heat flow through Ao;j if the
fluid temperature fields are at steady-state. The ratio
kf ;j=L is equal to the heat transfer coefficient. If this rela-
tion for steady-state heat transfer between two parallel
planes is applied to transient heat transfer as well, then
an error will be introduced. This error is corrected by
means of the history term. Therefore, fHT can be regarded
as a correction term.

3. Significance of the history term for a particle in a packed

bed

In order to examine the significance of the history term
of a particle in a packed bed let us consider a thought
experiment with a setup as depicted in Fig. 2. A cluster con-
taining N particle layers and with homogeneous initial tem-
perature T 0 is subjected to a constant heat flux _q. The heat
transfer occurs one-dimensionally, i.e. perpendicular to the
cluster surface. In this case only two of the six neighbours
of a particle in the bulk are relevant. The temperature of
the N-th particle layer at the bottom is held constant at
T 0. The properties (.; cp; k) of both fluid and solid are
assumed to be constant. As stated above, the temperature
of each particle is homogeneous, which is equivalent to
the assumption that ks !1. Under these conditions and
by use of dimensionless variables defined by

t� � af t

d2
s

and T � � ðT 1;1 � T Þ
ðT 1;1 � T 0Þ

ð21Þ

the energy balance of a particle i (Eq. 20) having two neigh-
bours can be transformed into

2

3bð2� cÞ
dT �i
dt�
¼ ðT �i�1 � T �i Þ þ ðT �iþ1 � T �i Þ þ � � �

þ 2

Z t�

0

X1
n¼1

exp � np
c

� �2

ðt� � s�Þ
" #

� ð�1Þn dT �i�1

ds�
� dT �i

ds�

� �
ds�

þ 2

Z t�

0

X1
n¼1

exp � np
c

� �2

ðt� � s�Þ
" #

� ð�1Þn dT �iþ1

ds�
� dT �i

ds�

� �
ds�; ð22Þ

with V s ¼ pd3
s=6, c � L=ds, and thus Ao ¼ cð2� cÞpd2

s=4.
The temperature of the particles at the bottom is held con-
stant, i.e.

dT �N
dt�
¼ 0: ð23Þ

The dimensionless energy balance of a particle in the top-
most layer reads:

2

3bð2� cÞ
dT �1
dt�
¼ ðT �2 � T �1Þ þ

1

N � 1
þ � � �

þ 2

Z t�

0

X1
n¼1

exp � np
c

� �2

ðt� � s�Þ
" #

� ð�1Þn dT �2
ds�
� dT �1

ds�

� �
ds�: ð24Þ

For the derivation of the second term on the right-hand
side of Eq. (24) the reader is referred to Appendix A.



Fig. 4. Dimensionless error due to neglection of the history term for
different particles (enumeration according to Fig. 2, N ¼ 5, c ¼ 0:2,
b ¼ 1:0).
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The system of N differential equations (Eqs. (22)–(24))
can now be solved numerically. For this purpose the inte-
grals are approximated by the trapez rule. The LIMEX sol-
ver [24] is used to integrate the system of differential
equations.

It should be noted that the dimensionless transient tem-
perature field in the cluster does neither depend on _q nor ds.
Only the impacts of three parameters are to be investigated:
c and N are geometrical parameters of the model whereas
the ratio of the volumetric heat capacities b is the only
physical parameter and therefore of special interest.

In Fig. 3 a typical result of the numerical integration is
shown. Depicted is the time-dependent dimensionless tem-
perature of the particles in the topmost layer of the cluster
(see Fig. 2). As is to be expected, the history term does not
affect the steady-state temperature field. Neglection of the
history term leads to an overestimation of the transient
temperature. This is due to the fact that the transient heat
transfer from particle to fluid is larger than the steady-state
heat transfer. The difference in the dimensionless tempera-
ture that results from neglection of the history term
(referred to as DT � in the following) is also depicted in
Fig. 3. The impact of the three aforementioned parameters
on the dimensionless temperature field can be quantified by
the maximum of DT �.

In Fig. 4 the crucial quantity DT � is plotted as a function
of time for several particles (or particle layers) in the clus-
ter. Clearly, DT � of the topmost particle layer is larger than
for all subsurface layers. This is due to the way the dimen-
sionless temperature is defined. In the subsequent dia-
grams, where the impact of the three parameters will be
investigated, the maximum value of this deviation for the
topmost particle layer (DT �max) will be used as a means to
quantify the significance of the history term.

The geometric parameter c represents the ratio L=ds.
This quantity has to be estimated by considering at which
distance L the real heat transfer geometry is represented
Fig. 3. Dimensionless temperature of the topmost particle layer with and
without consideration of the history term (N ¼ 3, c ¼ 0:2, b ¼ 1:0).
best by the parallel planes model (Fig. 1). There are two
boundary cases: For c! 0 the temperature field between
the almost touching parallel planes will reach steady-state
quasi instantaneously, which is why the impact of the his-
tory term should vanish (DT �max ! 0). The largest geomet-
rically meaningful value of c is 1. In this case DT �max

should be the largest since it takes the longest time to reach
the steady-state temperature field. The numerical results
depicted in Fig. 5 are in agreement with these consider-
ations. The graph also shows that for 0:1 < c < 0:5 the
order of magnitude of DT �max does not change. For examin-
ing the significance of the history term it is sufficient to esti-
mate the order of magnitude of DT �max. Therefore c will be
set arbitrarily to 0.2 in the following.

The dependence of DT �max on the number of particle lay-
ers N is illustrated in Fig. 6. For an understanding it is
again useful to consider the two border cases: If N ¼ 1 then
Fig. 5. Maximum dimensionless error due to neglection of the history
term in dependence of the geometrical parameter c (N ¼ 3, b ¼ 1:0Þ.



Fig. 6. Maximum dimensionless error due to neglection of the history
term in dependence of the number of particle layers (c ¼ 0:2, b ¼ 1:0).
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the history term has no impact because the temperature of
the particle layer is held constant. Thus DT �max ¼ 0. For
N !1 the denominator in the definition of the dimen-
sionless temperature (Eq. (21)) is infinite. The temperature
difference due to neglection of the history term is finite.
Therefore, DT �max ! 0. In light of these considerations it
is clear why a vulcano-type behaviour as depicted in
Fig. 6 can be observed. The main conclusion that can be
drawn is that for 1 < N < 30 the order of magnitude of
DT �max is independent from N. Therefore N will be set arbi-
trarily to 3 in the following.

Having demonstrated that the geometrical parameters c
and N do not change the order of magnitude of DT �max it
turns out that the physical parameter b is of fundamental
importance as far as the significance of the history term is
concerned. The major result of this study is depicted in
Fig. 7. Maximum dimensionless error due to neglection of the history
term in dependence of the volumetric heat capacity ratio b (N ¼ 3,
c ¼ 0:2).
Fig. 7. It can be concluded that the history term is signif-
icant for transient heat transfer in liquid–solid systems
(b � 100). For gas–solid systems (b � 10�3) the history
term can be neglected.
4. Discussion

The result depicted in Fig. 7 can be understood as fol-
lows: If the fluid in the interstitial region between two
neighbouring solid particles has a significantly lower vol-
umetric heat capacity compared to the solid (as is the
case for gas–solid systems), then the temperature of the
solid changes much slower than the temperature of the
fluid. In other words: The temperature field in the fluid
reaches steady-state quasi instantaneously. Therefore,
the error that is introduced by using steady-state rela-
tionships for the heat transfer coefficient is very small.
The history term (which corrects this error) can, thus,
be neglected, except for very high heating rates which
will be discussed below.

However, if the fluid has a volumetric heat capacity
which is in the same order of magnitude as the one of the
solid, then the time required for the temperature field in
the fluid to reach steady-state is significantly long. There-
fore, it is not justified to use steady-state relationships for
the heat transfer coefficient (or effective heat conductivites)
unless they are corrected by the history term.

It is to be expected that the larger the heat flux _q the
more significant the history term, since the change of tem-
perature with time increases and, thus, the deviation from
steady-state in the transient regime. This expectation may
be regarded as contradictory to the fact that DT �max does
not depend on _q. But the dependence is ‘‘hidden” in the
definition of the dimensionless temperature (Eq. (21)), since
in case of our thought experiment:

_q ¼ keff

ðT 1;1 � T 0Þ
ðN � 1Þds

: ð25Þ

Therefore, it can be concluded that the absolute error (in
K) due to neglection of the history term is proportional
to the heat flux. This shall be illustrated in the following.

In a previous study [25] a packed bed of glass spheres in
air (b � 7:4� 10�4) with a height of 0.041 m was heated by
a lamp ( _q ¼ 880 W=m2). Fig. 7 shows that in this case
DT �max � 10�5. With keff ¼ 0:35 W=ðm KÞ, as determined
in that study, it follows that ðT 1;1 � T 0Þ � 100 K. There-
fore, neglection of the history term leads to an error of
approximately 10�3 K, which is insignificant.

Jiang et al. [8] carried out experiments with laser pulse
heating of _q ¼ 2:27� 109 W=m2. If this heat flux would
have been imposed on the packed bed used by Polesek,
then the error would be of the order of 103 K. Jiang
et al. were able to show that the larger _q the stronger the
non-Fourier heat conduction behaviour. This experimental
finding is in line with our argumentation.
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5. Conclusion

In this study it has been shown that the history term can
be interpreted as a correction term. It corrects the error of
applying heat transfer coefficients (as well as effective ther-
mal conductivites) to transient processes. These quantities
are valid for steady-state processes only and must be cor-
rected if they are applied to transient processes. The latter
can be done by considering the history term.

For the first time a derivation of the history term based
on a geometry of finite dimension has been presented
resulting in a relation where no artificial quantities exist
(as opposed to previous studies). Only measurable quanti-
ties are contained.

The history term can be neglected in most cases of tran-
sient heat transfer in gas–solid packed beds. It can not be
neglected if the heat flux is very large ( _q > 106 W=m2), as
is the case in laser pulse heatings. In liquid–solid packed
beds the history term is always significant.

The fact that transient heat transfer in heterogeneous
media can sometimes not be described by Fourier’s law is
in part, but not primarily due to the fact that the effective
thermal conductivity is only applicable to steady-state
processes.
Appendix A. Dimensionless energy balance of a particle in
the topmost layer

For a particle in the topmost layer a term including the
external heat flux _q has to be added to the energy balance
as written in Eq. (20). Substituting the temperature and the
time by the dimensionless variables as defined in Section 3
leads to the following equation:

2

3bð2� cÞ
dT �1
dt�
¼ ðT �2 � T �1Þ þ

1

ð2� cÞ
_qds

kf ðT 0 � T 1;1Þ
þ � � �

þ 2

Z t�

0

X1
n¼1

exp � np
c

� �2

ðt� � s�Þ
" #

� ð�1Þn dT �2
ds�
� dT �1

ds�

� �
ds�: ðA:1Þ

For t!1 this balance reduces to

0 ¼ ðT �2;1 � T �1;1Þ þ
1

ð2� cÞ
_qds

kf ðT 0 � T 1;1Þ
: ðA:2Þ

For the case of constant properties of solid and fluid phase
the temperature field in the particle chain is linear at stea-
dy-state, which is why

T �2;1 � T �1;1
ds

¼
T �N ;1 � T �1;1
ðN � 1Þds

¼ � 1

ðN � 1Þds
: ðA:3Þ

With this relation and since T N ;1 ¼ T 0 Eq. (A.2) can be
rewritten as

0 ¼ � 1

ðN � 1Þ þ
1

ð2� cÞ
_qds

kf ðT 0 � T 1;1Þ
: ðA:4Þ
Solving this equation for _q yields

_q ¼ 2� c
N � 1

� �
kf ðT 0 � T 1;1Þ

ds
: ðA:5Þ

Substituting _q in Eq. (A.2) with Eq. (A.5) yields Eq. (24).
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